Next: About this document ...
Up: No Title
Previous: Future Work
- Ave58
- R. Avery, ``Theory of Coupled Reactors,'' Proc. United
Nations 2nd
Int. Conf. Peaceful Uses of Atomic Energy, Geneva, Switzerland, 12, 182
(1958).
- Bel70
- G. I. Bell and S. Glasstone, Nuclear Reactor Theory,
Van Nostrand Rienhold, New York (1970).
- Blo83
- R. N. Blomquist, U. Feldman and E. M. Gelbard, ``Monte Carlo
Small-Sample Perturbation Calculations,'' Proc. Topl. Mtg. Advances in
Reactor Computations, March 28 - 31, 1983, Salt Lake City, Utah, Vol. 1, p.
124 (1983).
- Bob84
- F. W. Bobrowicz, J. E. Lynch, K. J. Fisher and J. E. Tabor,
``Vectorized Monte Carlo Photon Transport,'' Parallel Computing,
1, 295 (1984).
- Bow72
- A. H. Bowker and G. J. Liberman, Engineering
Statistics, Second Edition, Prentice-Hall Inc., New Jersey (1972).
- Bow83
- H. Bowsher, E. M. Gelbard, P. Gemmel and G. Pack,
``Magnitude of
Bias in Monte Carlo Eigenvalue Calculations,'' Trans. Am. Nucl. Soc.,
45,
324 (1983).
- Bra70
- R. W. Brandon and J. C. Robinson, ``A Variational Approach
for the Determination of Neutron
Flux Spectra from Detector Activation,'' Nucl. Sci. Eng., 39, 151
(1970).
- Bri88
- J. F. Briesmeister, Ed., ``MCNP-A General Monte Carlo Code
N-Particle Transport Code,'' LA-12625-M, Los Alamos National Laboratory (1988).
- Bri86
- R. J. Brissenden and A. R. Garlick, ``Biases in the
Estimations
of Keff and Its Errors by Monte Carlo Methods,'' Ann. Nucl. Energy,
13, 2, 63 (1986).
- Bro81
- F. B. Brown, W. R. Martin and D. A. Calahan, ``A Discrete
Sampling Method for Vectorized Monte Carlo Calculations,'' Trans. Am.
Nucl. Soc., 38, 354 (1981).
- Bro85
- F. B. Brown and W. R. Martin, ``Monte Carlo Methods for
Radiation Transport Analysis on Vector Computers,'' Prog. Nucl. Energy.,
14, 269 (1985).
- Bro86
- F. B. Brown, ``Vectorization of Three-Dimensional
General-Geometry Monte Carlo,'' Trans. Am. Nucl. Soc., 53, 283
(1986).
- Car75
- L. L. Carter and E. D. Cashwell, Particle Transport
Simulation with the Monte Carlo Method, ERDA Critical Review Series, U.S.
Energy Research and Development Administration, Technical Information
Center-26607, Oak Ridge, TN (1975).
- Cas67
- K. M. Case and P. F. Zweifel, Linear Transport Theory,
Addison - Wesley, Reading, Massachusetts (1967).
- Cha85
- Y. Chauvet, ``Vectorization and Multitasking with a Monte
Carlo Code for Neutron Transport Problems,'' Monte-Carlo Methods and
Applications in Neutronics, Photonics and Statistical Physics, Proc.,
Cadarache Castle, France, April 1985, R. Alcouffe, R. Dautray, A. Forster, G.
Ledanois and B. Mercier, Eds., p. 234, Springer-Verlag, New York (1985).
- O'De82
- R. D. O'Dell, F. W. Brinkley and D. Marr, ``User's
Manual for
TWODANT: A code Package for Two-Dimensional, Diffusion-Accelerated,
Neutral-Particle Transport,'' LA-9814-M, Los Alamos National Lab., (1982).
- Dud79
- J. J. Duderstadt and W. R. Martin, Transport Theory,
John Wiley & Sons, New York (1979).
- Eno90
- M. Enosh, D. Shalaitin and Y. Yeiven, ``The Bias in Monte
Carlo
Eigenvalue Calculations,'' Prog. Nucl. Energy, 24, 1-3, 259 (1990).
- Gal95
- F. Z. Gallmeier, ``A New MCNP Option: KCORR - The Use of the
Correlated Sampling Method to Study Reactivity Effects Due to Changes of a
Reactor Arrangement,'' Nucl. Sci. Eng., 120, 102 (1995).
- Gas75
- R. C. Gast and N. R. Candelore, ``Monte Carlo Eigenfunctions
Strategies and Uncertainties,'' Proc. NEACRP Mtg. Monte Carlo Study Group,
ANL-75-2, NEA-CRP-L-118, Argonne National Lab. (1975).
- Gel74
- E. M. Gelbard and R. E. Prael, ``Monte Carlo Work at Argonne
National Laboratory,'' ANL-75-2(NEACRP-L-118), Argonne National Laboratory,
202 (1974).
- Gel81
- E. M. Gelbard, ``Unfinished Monte Carlo Business,''
Proc.
ANS/ENS Int. Meeting on Adv. in Mathematical Methods of Nuclear Engineering
Problems, Munich, Germany, April 27-29, 1981, European Nuclear Society (1981).
- Gel90a
- E. M. Gelbard and R. E. Prael, ``Computations of Standard
Deviations
in Eigenvalue Calculations,'' Prog. Nucl. Energy, 24, 237 (1990).
- Gel90b
- E. M. Gelbard, ``Present Status of Future Prospects of
Neutronics Monte Carlo,'' Int. Conf. on monte Carlo Methods for Neutron
and Photon Transport Calculations, Budapest, Hungary, Sept. 25-28, (1990).
- Gel91
- E. M. Gelbard, ``Monte Carlo Eigenvalue Biases:
Generalization Beyond the
Absorption Estimate,'' Trans. Am. Nucl. Soc., 64, 302 (1991).
- Gel94
- E. M. Gelbard and A. G. Gu, ``Biases in Monte Carlo
Eigenvalue Calculations,'' Nucl. Sci. Eng., 117, 1 (1994).
- Goa59
- W. Goad and R. Johnston, ``A Monte Carlo Method
for Criticality Problems,'' Nucl. Sci.
Eng., 5, 371 (1959).
- Hal80
- M. C. G. Hall, ``Monte Carlo Perturbation Theory in Neutron
Transport Calculations,'' Proc. Seminar Workshop, ORNL/RSIC-44 Report,
Oak
Ridge National Laboratory, 47 (1980).
- Hal82
- M. C. G. Hall, ``Cross-section adjustment with Monte Carlo
Sensitivities. Application to the Winfrith Iron Benchmark,'' Nucl. Sci.
Eng., 81, 423 (1982).
- Ham64
- J. M. Hammersley and D. C. Handscomb, Monte Carlo
Methods, John Wiley & Sons, New York (1964).
- Hof72a
- T. J. Hoffman and L. M. Petrie, ``Monte Carlo Reactivity
Calculations Using a Perturbation Source,'' Trans. Am. Nucl. Soc.,
15, 912 (1972).
- Hof72b
- T. J. Hoffman, J. C. Robinson and P. N. Stevens, ``The
Adjoint Difference Method and Its Application to Deep-Penetration Radiation
Transport,'' Nucl. Sci. Eng., 48, 179 (1972).
- Hof78
- T. J. Hoffman, L. M. Petrie and N. F. Landers, ``A Monte
Carlo
Perturbation Source Method for Reactivity Calculations,'' Nucl. Sci.
Eng., 66, 60 (1978).
- IBM94
- IBM AIX Parallel Environment Operation and Use,
Number SH26-7228, (1994).
- Jon87
- D.B. Jones, ``ARMP-02 Documentation, Part II,
Chapter 6 - CPM-2
Computer Code Manual,'' EPRI NP-4574-CCM, Part II, Ch. 6, Volumes 1,2, and 3,
Electric Power Research Institute (1987).
- Kal86
- M. H. Kalos and P. A. Whitlock, Monte Carlo Methods,
Vol.I: Basics, John Wiley & Sons, New York (1986).
- Kap58
- E. L. Kaplan, ``Monte Carlo Methods of Equilibrium
Solutions
in Neutron Multiplication,'' UCRL-5275-T, University of California (1959).
- Kap74
- H. G. Kaper, A. J. Lindeman and G. K. Leaf, ``Benchmark
Values
for the Slab and Sphere Criticality Problem in One-Group Neutron Transport
Theory,'' Nucl. Sci. Eng., 54, 94 (1974).
- Lar95
- E. W. Larsen and R. P. Rulko, Private Communications (1995).
- Leh51
- D. H. Lehmer, ``Mathematical Methods in Large-Scale
Computing Units,'' Ann. Comp. Lab. Harvard Univ., 26, 141 (1951).
- Lew93
- E. E. Lewis and W. F. Miller, Jr. , Computational
Methods of Neutron Transport, American Nuclear Society,
Inc., La Grange Park, Illinois, (1993).
- Lie68
- J. Lieberoth, ``A Monte Carlo Technique to Solve the
Static
Eigenvalue Problem of the Boltzmann Transport Equation,'' Nukleonik,
11, 5, 203 (1968).
- Lux89
- I. Lux, ``Note on Efficient Correlated Monte-Carlo
Games,''
Ann. Nucl. Energy, 16, 1, 39 (1989).
- Lux91
- I. Lux and L. Koblinger, Monte Carlo Particle
Transport
Methods: Neutron and Photon Calculations, CRC Press, Florida (1991).
- Mac73
- D. B. MacMillan, ``Monte Carlo Confidence Limits
for Iterated-Source
Calculations,'' Nucl. Sci. Eng., 50, 73 (1973).
- Maj94
- A. Majumdar and W. R. Martin, ``Calculations of
Reactivity
Perturbations Using Correlated Sampling Monte Carlo,''Trans. Am. Nucl.
Soc., 71, 203 (1994).
- Maj95a
- A. Majumdar and W. R. Martin, ``Multiple Reactivity
Calculation Using Single Correlated Sampling Monte Carlo Simulation,''
Proc. Int. Conf. on Mathematics and Computations, Reactor Physics and
Environmental Analyses, Portland, Oregon, April 39 - May 4, 1995, Vol. 1,
p. 85 (1995).
- Maj95b
- A. Majumdar and W. R. Martin, ``Development of a Multiple
Perturbation Monte Carlo Methods for Criticality Problems and Implementation on
Parallel Processors,''
Joint Nuclear Conferences X ENFIR/III ENAN, Auguas de Lindola,
Brazil, August 7 - 11 (1995).
- Mar91
- W. R. Martin, ``Monte Carlo Methods on Advanced Computer
Architectures,''
Advances in Nuclear Science and Technology, 22, 105 (1991).
- Mar86
- W. R. Martin, P. F. Nowak and J. A. Rathkopf, ``Monte Carlo
Photon Transport on a Vector Supercomputer,'' IBM J. Res. and Dev.,
30, 193 (1986).
- Mar87a
- W. R. Martin and F. B. Brown, ``Status of Vectorized Monte
Carlo for Particle Transport Analysis,'' International Journal of
Supercomputer Applications, 1(2), 11 (1987).
- Mar87b
- W. R. Martin, T. C. Wan, T. S. Abdel-Rahman and T.N. Mudge,
``Monte Carlo Photon Transport on Shared Memory and Distributed Memory Parallel
Processors,'' International Journal of
Supercomputer Applications, 1(3), 57 (1987).
- Mar93
- W. R. Martin, A. Majumdar, J. A. Rathkopf and
M. Litvin, ``Experiences
with Different Parallel Programming Paradigms for Monte Carlo Particle
Transport Leads to a Portable Toolkit for Parallel Monte Carlo,'' Proc.
Int. Joint Conf. Mathematical Methods and Supercomputing in Nuclear
Applications, Karlsruhe, Germany, April 19-23, 1993, Vol. II, p. 418 (1993).
- Mat72
- W. Matthes ``Calculation of Reactivity Perturbations
with the Monte Carlo Method,'' Nucl. Sci. Eng., 47, 234 (1972).
- Mat94
- S. Matsuura, F. B. Brown and R. N. Blomquist,
``Parallel Monte Carlo Eigenvalue Calculations,'' Trans. Am.
Nucl. Soc., 71, 199 (1994).
- Men68
- M. R. Mendelson, ``Monte Carlo Criticality Calculations
for Thermal Reactors,'' Nucl. Sci. Eng., 32, 319 (1968).
- Mih67
- J. T. Mihalczo, ``Multiplication of Uranium Metal by One
Velocity Monte Carlo Calculations,'' Nucl. Sci. Eng., 27, 557 (1967).
- Mik67
- G. A. Mikhailov, ``Calculation of System-parameter
Derivatives of Functionals of the Solutions to the Transport Equation,'' Zh.
Vychisl. Mat. Mat. Fiz., 7, 915 (1967) (in Russian).
- Mil67
- L. B. Miller, Monte Carlo Analysis of Reactivity
Coefficients in Fast Reactors, General Theory and Applications, ANL-7307 (TID
4500) Report, Argonne National Laboratory (1967).
- Moo76
- J. G. Moore, ``The Solution of Criticality Problems by
Monte Carlo Methods,'' Adv. Nucl. Sci. Tech., 9, 73 (1976).
- Nak77
- S. Nakamura, Computational Methods in Engineering and
Science, Wiley, New York (1977).
- Nel85
- W. R. Nelson, H. Hirayama and D. W. O. Rogers, ``The EGS4
Code System,'' Standford Linear Accelerator Center Report SLAC-265 (Stanford
Calif) (1985).
- NRC85
- Nuclear Regulatory Commission, ``Millstone Nuclear
Power Station
Unit 3 Final Safety Analysis Report,'' U.S. Nuclear Regulatory Commission
Docket Number 50-423, Amendment 13 (1985).
- Rie84
- H. Rief, ``Generalized Monte Carlo Perturbation Algorithms
for Correlated Sampling and A Second-order Taylor Series Approach,'' Ann.
Nucl. Energy,11, 9, 455 (1984).
- Rie86
- H. Rief, E. M. Gelbard, R. W. Schaefer and K. S. Smith,
``Review
of Monte Carlo Techniques for Analyzing Reactor Perturbations,'' Nucl. Sci.
Eng., 92, 289 (1986).
- Rie88
- H. Rief, ``Monte Carlo Uncertainty Analysis,''
Uncertainty Analysis, edited by Y. Ronen, CRC Press, Inc., 188 (1988).
- Rub81
- R. Y. Rubinstein, Simulation and the Monte Carlo
Method, John Wiley & Sons, New York (1981).
- Sei91
- E. Seifert, ``Calculation of Reactivity
Effects by the Monte Carlo
Perturbation Code OMEGA/P,'' Proceeding of the International Conference on
Nuclear Criticality Safety, Oxford, September, 1991, p. II-11 (1991).
- Spa69
- J. Spanier and E. M. Gelbard, Monte Carlo
Principles and Neutron
Transport Problems, Addison-Wesley, Reading, Massachusetts (1969).
- Tak70
- H. Takahashi, ``Monte Carlo Method for Geometrical
Perturbation and its Application to the Pulsed Fast Reactor,'' Nucl. Sci.
Eng., 41, 259 (1970).
- Urb95a
- T. J. Urbatsch, R. A. Forster, R. E. Prael and R. J. Beckman,
``Understanding the Three-Combined keff confidence Intervals in MCNP,''
Proc. of the Fifth Int.
Conf. on Nuclear Criticality Safety, Albuquerque, New Mexico, September
17-21, (1995).
- Urb95b
- T. J. Urbatsch, ``Iterative Acceleration Methods for Monte
Carlo and Deterministic Criticality Calculations,'' Ph.D. Dissertation, The
University of Michigan, Ann Arbor, Michigan (1995).
- Uss55
- L. N. Ussachoff, ``Equations for the Importance of Neutrons,''
Proc. U.N. Int. Conf. Peaceful Uses At. Energy, 5, 1656 (1955).
- Var62
- R. S. Varga, Matrix Iterative Analysis, Prentice-Hall,
Englewood Cliffs, N.J. (1962).
- Wal94
- S. Walters, K. Butterfield and D. Dudziak, ``Analysis of
Void Formation in SHEBA II Using SN and Monte Carlo Codes,'' Trans. Am.
Nucl. Soc., 70, 184 (1994).
- Wac66
- E. L. Wachspress, Iterative Solution of Elliptic
Systems, Prentice-Hall, Englewood Cliffs, N.J. (1966).
- Whi71
- G. E. Whitesides, ``A Difficulty in Computing the K-effective
of the World,'' Trans. Am. Nucl. Soc., 14, 680 (1971).
- Whi66
- G. E. Whitesides, G. W. Morrison and E. C. Crume,
``Few-Group
Monte Carlo Criticality Calculations,'' Trans. Am. Nucl. Soc., 9,
133 (1966).
- Zol83
- V. G. Zolotukhin and L. V. Maiorov, ``An Estimate of the
Systematic Errors in the Calculations of Criticality by the
Monte Carlo Method,'' Atomnaya Energia, 55, 3, 173 (1983).
DEVELOPMENT OF A MULTIPLE PERTURBATION MONTE CARLO METHOD
FOR EIGENVALUE PROBLEMS AND
IMPLEMENTATION ON PARALLEL PROCESSORSAmitava Majumdar
Chairperson: William R. Martin
We have developed a Monte Carlo method that calculates
multiple perturbation effects in the eigenvalue (K) of the
Boltzmann transport equation for neutrons from a single Monte Carlo simulation.
Two Monte Carlo techniques, source iteration and fission matrix approaches, have been
described. We have shown that subtracting two independent Monte Carlo
simulations for eigenvalue perturbation calculation encounters difficulties.
It is necessary to utilize some type of Monte Carlo perturbation technique.
We have shown that the combination of the correlated sampling
and source iteration methods encounters difficulties in calculating eigenvalue
perturbations. When the correlated sampling approach is
combined with the fission
matrix approach, it can successfully evaluate eigenvalue perturbations.
We have implemented the idea of performing Monte Carlo simulation
in an artificial reference system. Utilizing the fission matrix approach,
correlated sampling, and an
artificial reference system, we have developed the multiple perturbation
technique. The actual simulation is done in an
artificial reference system and all the perturbed and unperturbed systems'
fission matrices are correlated to that reference system. At the end of the
simulation, the dominant eigenvalue of the unperturbed
and all perturbed fission matrices are evaluated
numerically. This provides us with multiple Ks from a single Monte Carlo
simulation. We have tested this method for different test problems and the results
compared well with that of the TWODANT SN transport code. This method
allowed significant
savings in computational effort.
We have implemented fixed source and eigenvalue algorithms for neutron transport
on three different parallel machines, the
BBN Butterfly, KSR-1, and IBM-SP2. We have addressed the
issue of parallel random number generators and showed how the fixed source
and eigenvalue parallel algorithms differ.
Theoretical models for speedups have been developed and have compared well with the
observed speedups. Close to linear speedups were
observed for many of the test problems.
Next: About this document ...
Up: No Title
Previous: Future Work
Amitava Majumdar
9/20/1999