next up previous
Next: About this document ... Up: No Title Previous: Future Work

References

Ave58
R. Avery, ``Theory of Coupled Reactors,'' Proc. United Nations 2nd Int. Conf. Peaceful Uses of Atomic Energy, Geneva, Switzerland, 12, 182 (1958).

Bel70
G. I. Bell and S. Glasstone, Nuclear Reactor Theory, Van Nostrand Rienhold, New York (1970).

Blo83
R. N. Blomquist, U. Feldman and E. M. Gelbard, ``Monte Carlo Small-Sample Perturbation Calculations,'' Proc. Topl. Mtg. Advances in Reactor Computations, March 28 - 31, 1983, Salt Lake City, Utah, Vol. 1, p. 124 (1983).

Bob84
F. W. Bobrowicz, J. E. Lynch, K. J. Fisher and J. E. Tabor, ``Vectorized Monte Carlo Photon Transport,'' Parallel Computing, 1, 295 (1984).

Bow72
A. H. Bowker and G. J. Liberman, Engineering Statistics, Second Edition, Prentice-Hall Inc., New Jersey (1972).

Bow83
H. Bowsher, E. M. Gelbard, P. Gemmel and G. Pack, ``Magnitude of Bias in Monte Carlo Eigenvalue Calculations,'' Trans. Am. Nucl. Soc., 45, 324 (1983).

Bra70
R. W. Brandon and J. C. Robinson, ``A Variational Approach for the Determination of Neutron Flux Spectra from Detector Activation,'' Nucl. Sci. Eng., 39, 151 (1970).

Bri88
J. F. Briesmeister, Ed., ``MCNP-A General Monte Carlo Code N-Particle Transport Code,'' LA-12625-M, Los Alamos National Laboratory (1988).

Bri86
R. J. Brissenden and A. R. Garlick, ``Biases in the Estimations of Keff and Its Errors by Monte Carlo Methods,'' Ann. Nucl. Energy, 13, 2, 63 (1986).

Bro81
F. B. Brown, W. R. Martin and D. A. Calahan, ``A Discrete Sampling Method for Vectorized Monte Carlo Calculations,'' Trans. Am. Nucl. Soc., 38, 354 (1981).

Bro85
F. B. Brown and W. R. Martin, ``Monte Carlo Methods for Radiation Transport Analysis on Vector Computers,'' Prog. Nucl. Energy., 14, 269 (1985).

Bro86
F. B. Brown, ``Vectorization of Three-Dimensional General-Geometry Monte Carlo,'' Trans. Am. Nucl. Soc., 53, 283 (1986).

Car75
L. L. Carter and E. D. Cashwell, Particle Transport Simulation with the Monte Carlo Method, ERDA Critical Review Series, U.S. Energy Research and Development Administration, Technical Information Center-26607, Oak Ridge, TN (1975).

Cas67
K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison - Wesley, Reading, Massachusetts (1967).

Cha85
Y. Chauvet, ``Vectorization and Multitasking with a Monte Carlo Code for Neutron Transport Problems,'' Monte-Carlo Methods and Applications in Neutronics, Photonics and Statistical Physics, Proc., Cadarache Castle, France, April 1985, R. Alcouffe, R. Dautray, A. Forster, G. Ledanois and B. Mercier, Eds., p. 234, Springer-Verlag, New York (1985).

O'De82
R. D. O'Dell, F. W. Brinkley and D. Marr, ``User's Manual for TWODANT: A code Package for Two-Dimensional, Diffusion-Accelerated, Neutral-Particle Transport,'' LA-9814-M, Los Alamos National Lab., (1982).

Dud79
J. J. Duderstadt and W. R. Martin, Transport Theory, John Wiley & Sons, New York (1979).

Eno90
M. Enosh, D. Shalaitin and Y. Yeiven, ``The Bias in Monte Carlo Eigenvalue Calculations,'' Prog. Nucl. Energy, 24, 1-3, 259 (1990).

Gal95
F. Z. Gallmeier, ``A New MCNP Option: KCORR - The Use of the Correlated Sampling Method to Study Reactivity Effects Due to Changes of a Reactor Arrangement,'' Nucl. Sci. Eng., 120, 102 (1995).

Gas75
R. C. Gast and N. R. Candelore, ``Monte Carlo Eigenfunctions Strategies and Uncertainties,'' Proc. NEACRP Mtg. Monte Carlo Study Group, ANL-75-2, NEA-CRP-L-118, Argonne National Lab. (1975).

Gel74
E. M. Gelbard and R. E. Prael, ``Monte Carlo Work at Argonne National Laboratory,'' ANL-75-2(NEACRP-L-118), Argonne National Laboratory, 202 (1974).

Gel81
E. M. Gelbard, ``Unfinished Monte Carlo Business,'' Proc. ANS/ENS Int. Meeting on Adv. in Mathematical Methods of Nuclear Engineering Problems, Munich, Germany, April 27-29, 1981, European Nuclear Society (1981).

Gel90a
E. M. Gelbard and R. E. Prael, ``Computations of Standard Deviations in Eigenvalue Calculations,'' Prog. Nucl. Energy, 24, 237 (1990).

Gel90b
E. M. Gelbard, ``Present Status of Future Prospects of Neutronics Monte Carlo,'' Int. Conf. on monte Carlo Methods for Neutron and Photon Transport Calculations, Budapest, Hungary, Sept. 25-28, (1990).

Gel91
E. M. Gelbard, ``Monte Carlo Eigenvalue Biases: Generalization Beyond the Absorption Estimate,'' Trans. Am. Nucl. Soc., 64, 302 (1991).

Gel94
E. M. Gelbard and A. G. Gu, ``Biases in Monte Carlo Eigenvalue Calculations,'' Nucl. Sci. Eng., 117, 1 (1994).

Goa59
W. Goad and R. Johnston, ``A Monte Carlo Method for Criticality Problems,'' Nucl. Sci. Eng., 5, 371 (1959).

Hal80
M. C. G. Hall, ``Monte Carlo Perturbation Theory in Neutron Transport Calculations,'' Proc. Seminar Workshop, ORNL/RSIC-44 Report, Oak Ridge National Laboratory, 47 (1980).

Hal82
M. C. G. Hall, ``Cross-section adjustment with Monte Carlo Sensitivities. Application to the Winfrith Iron Benchmark,'' Nucl. Sci. Eng., 81, 423 (1982).

Ham64
J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, John Wiley & Sons, New York (1964).

Hof72a
T. J. Hoffman and L. M. Petrie, ``Monte Carlo Reactivity Calculations Using a Perturbation Source,'' Trans. Am. Nucl. Soc., 15, 912 (1972).

Hof72b
T. J. Hoffman, J. C. Robinson and P. N. Stevens, ``The Adjoint Difference Method and Its Application to Deep-Penetration Radiation Transport,'' Nucl. Sci. Eng., 48, 179 (1972).

Hof78
T. J. Hoffman, L. M. Petrie and N. F. Landers, ``A Monte Carlo Perturbation Source Method for Reactivity Calculations,'' Nucl. Sci. Eng., 66, 60 (1978).

IBM94
IBM AIX Parallel Environment Operation and Use, Number SH26-7228, (1994).

Jon87
D.B. Jones, ``ARMP-02 Documentation, Part II, Chapter 6 - CPM-2 Computer Code Manual,'' EPRI NP-4574-CCM, Part II, Ch. 6, Volumes 1,2, and 3, Electric Power Research Institute (1987).

Kal86
M. H. Kalos and P. A. Whitlock, Monte Carlo Methods, Vol.I: Basics, John Wiley & Sons, New York (1986).

Kap58
E. L. Kaplan, ``Monte Carlo Methods of Equilibrium Solutions in Neutron Multiplication,'' UCRL-5275-T, University of California (1959).

Kap74
H. G. Kaper, A. J. Lindeman and G. K. Leaf, ``Benchmark Values for the Slab and Sphere Criticality Problem in One-Group Neutron Transport Theory,'' Nucl. Sci. Eng., 54, 94 (1974).

Lar95
E. W. Larsen and R. P. Rulko, Private Communications (1995).

Leh51
D. H. Lehmer, ``Mathematical Methods in Large-Scale Computing Units,'' Ann. Comp. Lab. Harvard Univ., 26, 141 (1951).

Lew93
E. E. Lewis and W. F. Miller, Jr. , Computational Methods of Neutron Transport, American Nuclear Society, Inc., La Grange Park, Illinois, (1993).

Lie68
J. Lieberoth, ``A Monte Carlo Technique to Solve the Static Eigenvalue Problem of the Boltzmann Transport Equation,'' Nukleonik, 11, 5, 203 (1968).

Lux89
I. Lux, ``Note on Efficient Correlated Monte-Carlo Games,'' Ann. Nucl. Energy, 16, 1, 39 (1989).

Lux91
I. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations, CRC Press, Florida (1991).

Mac73
D. B. MacMillan, ``Monte Carlo Confidence Limits for Iterated-Source Calculations,'' Nucl. Sci. Eng., 50, 73 (1973).

Maj94
A. Majumdar and W. R. Martin, ``Calculations of Reactivity Perturbations Using Correlated Sampling Monte Carlo,''Trans. Am. Nucl. Soc., 71, 203 (1994).

Maj95a
A. Majumdar and W. R. Martin, ``Multiple Reactivity Calculation Using Single Correlated Sampling Monte Carlo Simulation,'' Proc. Int. Conf. on Mathematics and Computations, Reactor Physics and Environmental Analyses, Portland, Oregon, April 39 - May 4, 1995, Vol. 1, p. 85 (1995).

Maj95b
A. Majumdar and W. R. Martin, ``Development of a Multiple Perturbation Monte Carlo Methods for Criticality Problems and Implementation on Parallel Processors,'' Joint Nuclear Conferences X ENFIR/III ENAN, Auguas de Lindola, Brazil, August 7 - 11 (1995).

Mar91
W. R. Martin, ``Monte Carlo Methods on Advanced Computer Architectures,'' Advances in Nuclear Science and Technology, 22, 105 (1991).

Mar86
W. R. Martin, P. F. Nowak and J. A. Rathkopf, ``Monte Carlo Photon Transport on a Vector Supercomputer,'' IBM J. Res. and Dev., 30, 193 (1986).

Mar87a
W. R. Martin and F. B. Brown, ``Status of Vectorized Monte Carlo for Particle Transport Analysis,'' International Journal of Supercomputer Applications, 1(2), 11 (1987).

Mar87b
W. R. Martin, T. C. Wan, T. S. Abdel-Rahman and T.N. Mudge, ``Monte Carlo Photon Transport on Shared Memory and Distributed Memory Parallel Processors,'' International Journal of Supercomputer Applications, 1(3), 57 (1987).

Mar93
W. R. Martin, A. Majumdar, J. A. Rathkopf and M. Litvin, ``Experiences with Different Parallel Programming Paradigms for Monte Carlo Particle Transport Leads to a Portable Toolkit for Parallel Monte Carlo,'' Proc. Int. Joint Conf. Mathematical Methods and Supercomputing in Nuclear Applications, Karlsruhe, Germany, April 19-23, 1993, Vol. II, p. 418 (1993).

Mat72
W. Matthes ``Calculation of Reactivity Perturbations with the Monte Carlo Method,'' Nucl. Sci. Eng., 47, 234 (1972).

Mat94
S. Matsuura, F. B. Brown and R. N. Blomquist, ``Parallel Monte Carlo Eigenvalue Calculations,'' Trans. Am. Nucl. Soc., 71, 199 (1994).

Men68
M. R. Mendelson, ``Monte Carlo Criticality Calculations for Thermal Reactors,'' Nucl. Sci. Eng., 32, 319 (1968).

Mih67
J. T. Mihalczo, ``Multiplication of Uranium Metal by One Velocity Monte Carlo Calculations,'' Nucl. Sci. Eng., 27, 557 (1967).

Mik67
G. A. Mikhailov, ``Calculation of System-parameter Derivatives of Functionals of the Solutions to the Transport Equation,'' Zh. Vychisl. Mat. Mat. Fiz., 7, 915 (1967) (in Russian).

Mil67
L. B. Miller, Monte Carlo Analysis of Reactivity Coefficients in Fast Reactors, General Theory and Applications, ANL-7307 (TID 4500) Report, Argonne National Laboratory (1967).

Moo76
J. G. Moore, ``The Solution of Criticality Problems by Monte Carlo Methods,'' Adv. Nucl. Sci. Tech., 9, 73 (1976).

Nak77
S. Nakamura, Computational Methods in Engineering and Science, Wiley, New York (1977).

Nel85
W. R. Nelson, H. Hirayama and D. W. O. Rogers, ``The EGS4 Code System,'' Standford Linear Accelerator Center Report SLAC-265 (Stanford Calif) (1985).

NRC85
Nuclear Regulatory Commission, ``Millstone Nuclear Power Station Unit 3 Final Safety Analysis Report,'' U.S. Nuclear Regulatory Commission Docket Number 50-423, Amendment 13 (1985).

Rie84
H. Rief, ``Generalized Monte Carlo Perturbation Algorithms for Correlated Sampling and A Second-order Taylor Series Approach,'' Ann. Nucl. Energy,11, 9, 455 (1984).

Rie86
H. Rief, E. M. Gelbard, R. W. Schaefer and K. S. Smith, ``Review of Monte Carlo Techniques for Analyzing Reactor Perturbations,'' Nucl. Sci. Eng., 92, 289 (1986).

Rie88
H. Rief, ``Monte Carlo Uncertainty Analysis,'' Uncertainty Analysis, edited by Y. Ronen, CRC Press, Inc., 188 (1988).

Rub81
R. Y. Rubinstein, Simulation and the Monte Carlo Method, John Wiley & Sons, New York (1981).

Sei91
E. Seifert, ``Calculation of Reactivity Effects by the Monte Carlo Perturbation Code OMEGA/P,'' Proceeding of the International Conference on Nuclear Criticality Safety, Oxford, September, 1991, p. II-11 (1991).

Spa69
J. Spanier and E. M. Gelbard, Monte Carlo Principles and Neutron Transport Problems, Addison-Wesley, Reading, Massachusetts (1969).

Tak70
H. Takahashi, ``Monte Carlo Method for Geometrical Perturbation and its Application to the Pulsed Fast Reactor,'' Nucl. Sci. Eng., 41, 259 (1970).

Urb95a
T. J. Urbatsch, R. A. Forster, R. E. Prael and R. J. Beckman, ``Understanding the Three-Combined keff confidence Intervals in MCNP,'' Proc. of the Fifth Int. Conf. on Nuclear Criticality Safety, Albuquerque, New Mexico, September 17-21, (1995).

Urb95b
T. J. Urbatsch, ``Iterative Acceleration Methods for Monte Carlo and Deterministic Criticality Calculations,'' Ph.D. Dissertation, The University of Michigan, Ann Arbor, Michigan (1995).

Uss55
L. N. Ussachoff, ``Equations for the Importance of Neutrons,'' Proc. U.N. Int. Conf. Peaceful Uses At. Energy, 5, 1656 (1955).

Var62
R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N.J. (1962).

Wal94
S. Walters, K. Butterfield and D. Dudziak, ``Analysis of Void Formation in SHEBA II Using SN and Monte Carlo Codes,'' Trans. Am. Nucl. Soc., 70, 184 (1994).

Wac66
E. L. Wachspress, Iterative Solution of Elliptic Systems, Prentice-Hall, Englewood Cliffs, N.J. (1966).

Whi71
G. E. Whitesides, ``A Difficulty in Computing the K-effective of the World,'' Trans. Am. Nucl. Soc., 14, 680 (1971).

Whi66
G. E. Whitesides, G. W. Morrison and E. C. Crume, ``Few-Group Monte Carlo Criticality Calculations,'' Trans. Am. Nucl. Soc., 9, 133 (1966).

Zol83
V. G. Zolotukhin and L. V. Maiorov, ``An Estimate of the Systematic Errors in the Calculations of Criticality by the Monte Carlo Method,'' Atomnaya Energia, 55, 3, 173 (1983).

DEVELOPMENT OF A MULTIPLE PERTURBATION MONTE CARLO METHOD FOR EIGENVALUE PROBLEMS AND IMPLEMENTATION ON PARALLEL PROCESSORSAmitava Majumdar Chairperson: William R. Martin

We have developed a Monte Carlo method that calculates multiple perturbation effects in the eigenvalue (K) of the Boltzmann transport equation for neutrons from a single Monte Carlo simulation. Two Monte Carlo techniques, source iteration and fission matrix approaches, have been described. We have shown that subtracting two independent Monte Carlo simulations for eigenvalue perturbation calculation encounters difficulties. It is necessary to utilize some type of Monte Carlo perturbation technique. We have shown that the combination of the correlated sampling and source iteration methods encounters difficulties in calculating eigenvalue perturbations. When the correlated sampling approach is combined with the fission matrix approach, it can successfully evaluate eigenvalue perturbations. We have implemented the idea of performing Monte Carlo simulation in an artificial reference system. Utilizing the fission matrix approach, correlated sampling, and an artificial reference system, we have developed the multiple perturbation technique. The actual simulation is done in an artificial reference system and all the perturbed and unperturbed systems' fission matrices are correlated to that reference system. At the end of the simulation, the dominant eigenvalue of the unperturbed and all perturbed fission matrices are evaluated numerically. This provides us with multiple $\Delta$Ks from a single Monte Carlo simulation. We have tested this method for different test problems and the results compared well with that of the TWODANT SN transport code. This method allowed significant savings in computational effort.

We have implemented fixed source and eigenvalue algorithms for neutron transport on three different parallel machines, the BBN Butterfly, KSR-1, and IBM-SP2. We have addressed the issue of parallel random number generators and showed how the fixed source and eigenvalue parallel algorithms differ. Theoretical models for speedups have been developed and have compared well with the observed speedups. Close to linear speedups were observed for many of the test problems.



next up previous
Next: About this document ... Up: No Title Previous: Future Work
Amitava Majumdar
9/20/1999