next up previous
Next: Issues Related to Monte Up: Monte Carlo K Calculation Previous: Monte Carlo K algorithms

Statistics for Monte Carlo K Calculation

A Monte Carlo eigenvalue simulation provides the following estimate of the average eigenvalue,
\begin{displaymath}
K = \frac{1}{I_a}\sum\limits_{i=1}^{I_a}{K_i},\end{displaymath} (26)
where Ki is the batch eigenvalue. The sample variance in this estimate of K is
\begin{displaymath}
\sigma_s^2 = \frac{\sum\limits_{i=1}^{I_a}{K_i}^2}{I_a - 1} - \frac
{({\sum\limits_{i=1}^{I_a}{K_i}})^2}{I_a(I_a-1)}.\end{displaymath} (27)
The standard deviation is then
\begin{displaymath}
\sigma = \frac{\sigma_s}{I_a^{\frac{1}{2}}},\end{displaymath} (28)
which is provided along with the average eigenvalue estimate. The expressions for the variance and standard deviations assume that the batch eigenvalues are independent, hence no batch-to-batch correlations exist after the fundamental eigenmode is reached.



Amitava Majumdar
9/20/1999