Next: Issues Related to Monte
Up: Monte Carlo K Calculation
Previous: Monte Carlo K algorithms
A Monte Carlo eigenvalue simulation provides the
following estimate of the average eigenvalue,
| ![\begin{displaymath}
K = \frac{1}{I_a}\sum\limits_{i=1}^{I_a}{K_i},\end{displaymath}](img66.gif) |
(26) |
where Ki is the batch eigenvalue. The sample variance in this estimate of
K is
| ![\begin{displaymath}
\sigma_s^2 = \frac{\sum\limits_{i=1}^{I_a}{K_i}^2}{I_a - 1} - \frac
{({\sum\limits_{i=1}^{I_a}{K_i}})^2}{I_a(I_a-1)}.\end{displaymath}](img67.gif) |
(27) |
The standard deviation is then
| ![\begin{displaymath}
\sigma = \frac{\sigma_s}{I_a^{\frac{1}{2}}},\end{displaymath}](img68.gif) |
(28) |
which is provided along with the average eigenvalue estimate.
The expressions for the variance and standard deviations assume
that the batch eigenvalues are independent, hence no batch-to-batch
correlations
exist after the fundamental eigenmode is reached.
Amitava Majumdar
9/20/1999