next up previous
Next: K Calculation Up: Multiple Reactivity Calculation Previous: Reference System

Forward $\delta$-scatter

As with the single perturbation case, a $\delta$-scatter cross section is added to the total cross sections of the reference, unperturbed and perturbed systems. The $\delta$-scatter cross section for the reference system ($\delta^{ref}$) is chosen, depending upon the problem, such that,
\begin{displaymath}
\delta^{ref} \ge \mid \Sigma_t^{ref} - max(\Sigma_t^{p_i}) \mid\;\;\;; 
if\; max(\Sigma_t^{p_i}) \gt
\Sigma_t^{up},\end{displaymath} (92)
or,
\begin{displaymath}
\delta^{ref} \ge \mid \Sigma_t^{ref} - \Sigma_t^{up} \mid\;\;\;;
if\;\Sigma_t^{up} \gt max(\Sigma_t^{p_i}). \end{displaymath} (93)
The $\delta$-scatter cross section for the unperturbed system ($\delta^{up}$) and perturbed systems ($\delta^{p_i}$, i = 1,2,3,...,N) are chosen as,
\begin{displaymath}
\delta^{up} = \Sigma_t^{ref} + \delta^{ref} - \Sigma_t^{up},\end{displaymath} (94)
and,  
 \begin{displaymath}
\delta^{p_i} = \Sigma_t^{ref} + \delta^{ref} - \Sigma_t^{p_i}.\end{displaymath} (95)
The conditions imposed by equation (4.5) and (4.6) ensure that all the $\delta$-scatter cross sections are nonnegative. In our test problems the above four equations are used to determine forward $\delta$-scatters for the reference, unperturbed and all perturbed systems. The distance to collision d in the reference system is sampled from ${({\Sigma_t}^{ref}+\delta^{ref})}{exp(-(\Sigma_t^{ref}+\delta^{ref})d)}$, and the modified biasing factors for the unperturbed and all perturbed systems become,
\begin{displaymath}
WF^{up} =
{{{({\Sigma_t}^{up}+\delta^{up})}{exp(-(\Sigma_t^{...
 ...ef}+\delta^{ref})}{exp(-(\Sigma_t^{ref}+\delta^{ref})d)}}} = 1,\end{displaymath} (96)
and,
\begin{displaymath}
WF^{p_i} =
{{({\Sigma_t}^{p_i}+\delta^{p_i})}{exp(-(\Sigma_t...
 ...ref}+\delta^{ref})}{exp(-(\Sigma_t^{ref}+\delta^{ref})d)}} =
1.\end{displaymath} (97)
This avoids large fluctuations in WFup and WFpi.


next up previous
Next: K Calculation Up: Multiple Reactivity Calculation Previous: Reference System
Amitava Majumdar
9/20/1999