Next: K Calculation
Up: Multiple Reactivity Calculation
Previous: Reference System
As with the single perturbation case, a
-scatter cross section
is added to the total cross sections of the reference,
unperturbed and perturbed systems. The
-scatter cross section
for the
reference system (
) is chosen, depending upon the problem, such
that,
| ![\begin{displaymath}
\delta^{ref} \ge \mid \Sigma_t^{ref} - max(\Sigma_t^{p_i}) \mid\;\;\;;
if\; max(\Sigma_t^{p_i}) \gt
\Sigma_t^{up},\end{displaymath}](img199.gif) |
(92) |
or,
| ![\begin{displaymath}
\delta^{ref} \ge \mid \Sigma_t^{ref} - \Sigma_t^{up} \mid\;\;\;;
if\;\Sigma_t^{up} \gt max(\Sigma_t^{p_i}). \end{displaymath}](img200.gif) |
(93) |
The
-scatter cross section for the unperturbed system (
)
and perturbed
systems (
, i = 1,2,3,...,N) are chosen as,
| ![\begin{displaymath}
\delta^{up} = \Sigma_t^{ref} + \delta^{ref} - \Sigma_t^{up},\end{displaymath}](img203.gif) |
(94) |
and,
| ![\begin{displaymath}
\delta^{p_i} = \Sigma_t^{ref} + \delta^{ref} - \Sigma_t^{p_i}.\end{displaymath}](img204.gif) |
(95) |
The conditions imposed by equation (4.5) and (4.6)
ensure that all the
-scatter cross sections are nonnegative.
In our test problems the above four equations are used to
determine forward
-scatters for the reference, unperturbed and all perturbed
systems. The distance to collision
d in the reference system is sampled from
, and
the modified biasing factors for the unperturbed and all perturbed systems
become,
| ![\begin{displaymath}
WF^{up} =
{{{({\Sigma_t}^{up}+\delta^{up})}{exp(-(\Sigma_t^{...
...ef}+\delta^{ref})}{exp(-(\Sigma_t^{ref}+\delta^{ref})d)}}} = 1,\end{displaymath}](img206.gif) |
(96) |
and,
| ![\begin{displaymath}
WF^{p_i} =
{{({\Sigma_t}^{p_i}+\delta^{p_i})}{exp(-(\Sigma_t...
...ref}+\delta^{ref})}{exp(-(\Sigma_t^{ref}+\delta^{ref})d)}} =
1.\end{displaymath}](img207.gif) |
(97) |
This avoids large fluctuations in WFup and WFpi.
Next: K Calculation
Up: Multiple Reactivity Calculation
Previous: Reference System
Amitava Majumdar
9/20/1999