Next: IBM-SP2 Parallel Computer
Up: Parallel Monte Carlo Eigenvalue
Previous: Parallel Algorithm
Similar to section 5.2.1, an expression for speedup can be derived for the
eigenvalue and perturbation parallel algorithms.
For the master-slave algorithm, serial communication takes place, because the
master process can only receive one message at a time. We expect the
parallelization overhead and synchronization time to be proportional to (N-1).
Hence, we
express
as;
| ![\begin{displaymath}
{\Delta\tau} = {\alpha(N-1)}\;\;\;.\end{displaymath}](img255.gif) |
(124) |
The time for a parallel
simulation on N processors can be written as;
| ![\begin{displaymath}
{\tau_N} = a + {{bN_h}\over {N}} + {\alpha(N-1)}\;\;\;.\end{displaymath}](img256.gif) |
(125) |
In the above equation, after evaluating constants a and b from two serial
execution time, all the terms are known except
. The parameter
is the
actual measured time on N processors of IBM-SP2. Hence,
can be
determined from equation (5.22). The observed speedup is expressed as;
| ![\begin{displaymath}
{S_N} = {{\tau_1}\over{\tau_N}} = {{\tau_1}\over{{a} + {b{{N_h}\over{N}}} +
{\alpha(N-1)}}}\;\;\;.\end{displaymath}](img257.gif) |
(126) |
The predicted speedup follows the curve given by;
| ![\begin{displaymath}
{S_N{(predicted)}} = {{N}\over{{1} + {{\beta}N}}}\;\;\;,\end{displaymath}](img258.gif) |
(127) |
where,
| ![\begin{displaymath}
{\beta} = {{\alpha}\over{\tau_N}}\;\;\;.\end{displaymath}](img259.gif) |
(128) |
Here
represents the fraction of total computation time spent in
parallelization overhead, communication, synchronization,
etc. between two processors [Mat94].
Next: IBM-SP2 Parallel Computer
Up: Parallel Monte Carlo Eigenvalue
Previous: Parallel Algorithm
Amitava Majumdar
9/20/1999